2 resultados para organ distribution

em DigitalCommons@The Texas Medical Center


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cytochrome P450 (P450) monooxygenase system plays a major role in metabolizing a wide variety of xenobiotic as well as endogenous compounds. In performing this function, it serves to protect the body from foreign substances. However, in a number of cases, P450 activates procarcinogens to cause harm. In most animals, the highest level of activity is found in the liver. Virtually all tissues demonstrate P450 activity, though, and the role of the P450 monooxygenase system in these other organs is not well understood. In this project I have studied the P450 system in rat brain; purifying NADPH-cytochrome P450 reductase (reductase) from that tissue. In addition, I have examined the distribution and regulation of expression of reductase and P450 in various anatomical regions of the rat brain.^ NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by SDS-PAGE and Western blot techniques. Kinetic studies utilizing cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P4501A1 as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. These results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.^ Since the brain is not a homogeneous organ, dependent upon the well orchestrated interaction of numerous parts, pathology in one nucleus may have a large impact upon its overall function. Hence, the anatomical distribution of the P450 monooxygenase system in brain is important in elucidating its function in that organ. Related to this is the regulation of P450 expression in brain. In order to study these issues female rats--both ovariectomized and not--were treated with a number of xenobiotic compounds and sex steroids. The brains from these animals were dissected into 8 discrete regions and the presence and relative level of message for P4502D and reductase determined using polymerase chain reaction. Results of this study indicate the presence of mRNA for reductase and P4502D isoforms throughout the rat brain. In addition, quantitative PCR has allowed the determination of factors affecting the expression of message for these enzymes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Injury mortality was classically described with a tri-modal distribution, with immediate deaths at the scene, early deaths due to hemorrhage, and late deaths from organ failure. We hypothesized that trauma systems development have improved pre-hospital care, early resuscitation, and critical care, and altered this pattern. ^ Methods. This is a population-based study of all trauma deaths in an urban county with a mature trauma system (n=678, median age 33 years, 81% male, 43% gunshot, 20% motor vehicle crashes). Deaths were classified as immediate (scene), early (in hospital, ≤ 4 hours from injury), or late (>4 hours post injury). Multinomial regression was used to identify independent predictors of immediate and early vs. late deaths, adjusted for age, gender, race, intention, mechanism, toxicology and cause of death. ^ Results. There were 416 (61%) immediate, 199 (29%) early, and 63 (10%) late deaths. Immediate deaths remained unchanged and early deaths occurred much earlier (median 52 minutes vs. 120). However, unlike the classic trimodal distribution, there was no late peak. Intentional injuries, alcohol intoxication, asphyxia, and injuries to the head and chest were independent predictors of immediate deaths. Alcohol intoxication and injuries to the chest were predictors of early deaths, while pelvic fractures and blunt assaults were associated with late deaths. ^ Conclusion. Trauma deaths now have a bimodal distribution. Elimination of the late peak likely represents advancements in resuscitation and critical care that have reduced organ failure. Further reductions in mortality will likely come from prevention of intentional injuries, and injuries associated with alcohol intoxication. ^